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Universal relations in the finite-size correction terms of two-dimensional Ising models
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Quite recently, Izmailian and Hu@Phys. Rev. Lett.86, 5160~2001!# studied the finite-size correction terms
for the free energy per spin and the inverse correlation length of the critical two-dimensional Ising model. They
obtained the universal amplitude ratio for the coefficients of two series. In this study we give a simple
derivation of this universal relation; we donot use an explicit form of series expansion. Moreover, we show
that the Izmailian and Hu’s relation is reduced to a simple and exact relation between the free energy and the
correlation length. This equation holds at any temperature and has the same form as the finite-size scaling.
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Universality and scaling are two basic concepts in
study of phase transitions and critical phenomena@1,2#. The
critical properties are universal to a large extent depend
on a few parameters, such as the space dimensionality
the symmetry of the order parameter. Critical expone
critical amplitude ratios, and scaling functions are examp
of universal quantities@3,4#. Finite-size scaling@5,6# has
been increasingly important, partly due to the progress in
theoretical understanding of finite-size effects, and partly
to the application to the analysis of simulational results. R
cently, more attention has been paid to the universality
finite-size scaling functions@7# for both percolation models
@8# and Ising models@9#. In two dimensions the relevance o
the finite-size properties to the conformal field theory is a
other source of interest@10#.

Quite recently, Izmailian and Hu@11# studied the finite-
size correction terms for the free energy per spin and
inverse correlation length of critical two-dimensional~2D!
Ising models@12–14#. They obtained the universal amplitud
ratio for the coefficients of two series. Let us denote the f
energy per spin and the inverse correlation length
N3` lattice as f N and jN

21 , respectively. Then, Izmailian
and Hu@11# obtained analytic expressions for the finite-si
correction coefficientsak andbk defined by

N~ f N2 f `!5 (
k51

`
ak

N2k21
, ~1!

jN
215 (

k51

`
bk

N2k21
, ~2!

at the criticality for the square~sq!, honeycomb~hc!, and
plane-triangular~pt! lattices. Here,f ` denotes the value o
f N asN→`. They found that

bk

ak
5

22k21

22k2121
~3!
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for all of these lattices, that is, the amplitude ratiobk /ak is
universal. They also obtained similar expansions for the c
cal ground state energyE(0) and the first energy gap (E(1)

2E(0)) of the one-dimensional~1D! quantumXY model
with uniform field@15# at the critical field, and found that th
amplitude ratios of two coefficients have the same values
Eq. ~3!.

The lowest-order correction termsa1 andb1 are related to
the central chargec and the magnetic scaling fieldxH in the
conformal field theory bya15cp/6 andb152pxH , respec-
tively. The finite-size correction terms of 2D systems ha
also received current interest. The finite-size corrections
scaling of correlation lengths and free energies of the crit
2D Ising and three-state Potts models were numerically s
ied by de Quieroz@16#. The finite-size corrections to th
energy and specific heat of the critical 2D Ising model we
also analyzed by Salas@17#. Moreover, Salas and Sokal stud
ied several universal amplitude ratios for the critical 2D Isi
model @18#.

In this Rapid Communication we will give a simple der
vation of the universal amplitude ratio, Eq.~3!. Instead of
using an explicit form of expansion in 1/N, which is avail-
able only at the criticality, we show a finite-size-scaling–li
relation which holds at an arbitrary temperature. The univ
sal amplitude ratio can be readily derived from this relatio

Let us start with comparing the free energy per spin a
the inverse correlation length for sizeN andN/2. Assuming
the expansion, Eq.~1!, we have the expression for the diffe
ence off N and f N/2 as

f N/22 f N5 (
k51

`
ak

N2k
$22k21%. ~4!

In a similar way, using Eq.~2!, we have

jN/2
212jN

215 (
k51

`
bk

N2k21
$22k2121%. ~5!

From Eqs.~4! and~5!, we get the following statement: If the
relation

f N/22 f N5
1

N
~jN/2

212jN
21! ~6!
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is satisfied, we have the relation of two coefficients, Eq.~3!.
If we can show Eq.~6! directly, explicit expressions for the
coefficientsak andbk are not necessary. Equation~6! is com-
patible to the finite-size scaling@2,6# of the singular part of
the free energy forN3` systems,f N}(1/N)jN

21(N→`);
namely, Eq.~6! should hold asymptotically at the critica
point. In fact, as we show in the following, Eq.~6! holds
exactlyat any temperature for several models that belong
the 2D Ising universality class.

First, we deal with the 2D Ising model defined by th
Hamiltonian

bH52J(̂
i j &

sisj , ~7!

where the Ising variablesi takes61, b5(kBT)21, and the
summation is taken over the nearest-neighbor pairs of s
for N3` lattices. Using a transfer matrix method@19,20#,
we can calculate the free energy per spin,f N , and the inverse
correlation length,jN

21 , through the relations

f N5
1

zN
ln L0 , ~8!

jN
215

1

z
ln~L0 /L1!, ~9!

whereL0 and L1 are the largest and the second largest
genvalues of the transfer matrix. Here, a geometric factoz
is 1, 2/A3 and 1/A3 for sq, hc, and pt lattices, respective
Exact expressions for eigenvaluesL0 and L1 are available
for sq @12,19,20#, hc @14#, and pt@13# lattices.

Let us consider the Onsager solution for the sq lattice w
periodic boundary conditions@12#. The two leading eigenval
ues of the transfer matrix are given by

L05~2 sinh 2J!N/2 expS 1

2 (
r 50

N21

g2r 11D , ~10!

L15~2 sinh 2J!N/2 expS 1

2 (
r 50

N21

g2r D . ~11!

Here,g r is implicitly given by

coshg r5
cosh2 2J

sinh 2J
2cos

rp

N
. ~12!

Then, we get the free energy per spinf N , Eq. ~8!, and the
inverse correlation lengthjN

21 , Eq. ~9!, as

f N5
1

2
ln~2 sinh 2J!1

1

2N (
r 50

N21

g2r 11 , ~13!

jN
215

1

2 (
r 50

N21

~g2r 112g2r !. ~14!
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To expressf N/2 andjN/2 , we replaceN by N/2 andg r by g r8
in Eqs.~13! and ~14!, respectively. Hereg r8 is the value for
sizeN/2, and is related tog r through the relation

coshg r85
cosh2 2J

sinh 2J
2cos

rp

N/2
5coshg2r , ~15!

that is,

g r85g2r . ~16!

Equation~16! is the basic relation for our argument. Usin
relation ~16!, we have

f N/22 f N5
1

2N
$2~g21g61•••1g2N22!

2~g11g31•••1g2N21!%. ~17!

Similarly, we have

jN/2
212jN

215
1

2
$~g21g61•••1g2N222g02g42•••

2g2N24!2~g11g31•••1g2N212g02g2

2•••2g2N22!%

5
1

2
$2~g21g61•••1g2N22!2~g11g31•••

1g2N21!%. ~18!

Comparing Eqs.~17! and~18!, we arrive at the desired rela
tion, Eq. ~6!. This implies that the ratio for the finite-siz
correction coefficientsbk /ak is given by Eq.~3!.

Next we consider the Ising model on the hc lattice. T
two leading eigenvalues of the transfer matrix are given
@14#

L05~2 sinh 2J!N expS (
r 50

N/221

g2r 11D , ~19!

L15~2 sinh 2J!N expS (
r 51

N/221

g2r1
g01gN

2 D . ~20!

In this case,g r is implicitly given by

coshg r5cosh 2J cosh 2J* 2sin2
pr

N

2cos
pr

N S sinh2 2J sinh2 2J* 2sin2
pr

N D 1/2

,

~21!

where J* is defined by (cosh 2J21)(cosh 2J*21)51. For
sizeN/2, we replaceN by N/2 andg r by g r8 in Eqs.~19! and
~20!. The relation ofg r8 , the value for sizeN/2, andg r can
be obtained by using Eq.~21!; we have the same relation a
3-2
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Eq. ~16!, g r85g2r . Starting from Eqs.~8! and ~9! together
with Eqs.~19! and ~20!, with some algebra, we get

Nz~ f N/22 f N!5z~jN/2
212jN

21!

52~g21g61•••1gN22!

2~g11g31•••1gN21!. ~22!

Thus, we again obtain relation~6!. In this way, we have
shown that the amplitude ratiobk /ak is given by Eq.~3!. For
the pt lattice, we may use the star-triangle transformat
@21# to show Eq.~6! from the result of the hc lattice withou
making an explicit calculation.

Some comments should be added here. We have sh
the universality of the amplitude ratio, Eq.~3!, without using
the condition of the criticality. This means that the prope
of this universality holds not only at the critical point b
also at any temperature in 2D Ising models. The ratiobk /ak
takes the universal value for all the temperatures. Howe
we should note that the expression for the inverse correla
length, Eq.~9!, is valid only forT>Tc . For T,Tc , L0 and
L1 are degenerate in the thermodynamic limit,N→`, which
means the existence of the long-range order@19,20#. We
should subtract the long-range order contribution from
correlation function when considering the correlation leng
We may regardbk as the correction amplitude for the righ
hand side of Eq.~9! for T,Tc .

Izmailian and Hu@11# also studied another model whic
belongs to the 2D Ising universality class. The 1D quant
XY model with uniform field, whose Hamiltonian is given b

H52
1

4 (
n51

N

@~11g!sn
xsn11

x 1~12g!sn
ysn11

y #

2
h

2 (
n51

N

sn
z , ~23!

was exactly solved by Katsura@15#. Here,sx, sy andsz are
the Pauli matrices. For 0,g<1, there is a critical magnetic
field hc51, and the phase transition of this model belongs
the 2D Ising universality class. Forg51 it is also called the
1D transverse Ising model. The Hamiltonian of Eq.~23! is
diagonalized by a Jordan-Wigner transformation as

H52(
k

L~k!S hk* hk2
1

2D , ~24!

wherehk* , hk are fermionic creation and annihilation oper
tors and

L~k!5A~cosk1h!21~g sink!2. ~25!

We should note that the choice ofk depends on the boundar
condition. The ground state energyE(0) and the first energy
gap DE5E(1)2E(0) of the quantum spin model, respe
tively, correspond to the free energy and inverse correla
length for the Ising model; that is,

N fN⇔2EN
(0) and jN

21⇔DEN .
03510
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For theN quantum spin systems with the periodic bounda
condition, we have@22,23#

EN
(0)52

1

2 (
r 50

N21

g2r 11 , ~26!

DEN52
1

2 (
r 50

N21

~g2r2g2r 11!, ~27!

where we have used the notationg r5L(rp/N). Let us con-
sider the energy for sizeN and that forN/2 as in the classica
2D Ising model. For sizeN/2, we replaceN by N/2 andg r by
g r8 in Eqs.~26! and~27!. Here,g r8 is again the value forN/2,
and the relation ofg r8 andg r can be obtained by using Eq
~25!. As a result, we have the same relation as Eq.~16!, that
is,

g r85g2r . ~28!

Then, we obtain the expression for the difference betw
EN

(0) andEN/2
(0) as

EN/2
(0)2EN

(0)52
1

2
$2~g21g61•••1g2N22!

2~g11g31•••1g2N21!%. ~29!

For the first energy gap, we can also calculate the differe
between the values forN andN/2. Using Eq.~28!, with some
algebra, we finally have

DEN/22DEN5
1

2
$2~g21g61•••1g2N22!

2~g11g31•••1g2N21!%. ~30!

From Eqs.~29! and ~30!, we have

2~EN/2
(0)2EN

(0)!5DEN/22DEN , ~31!

which shows that the amplitude ratio of the finite-size c
rection coefficient for the ground state energy (2E(0)), ak ,
and that for the first energy gapDE, bk , is given by Eq.~3!.

The amplitude ratiobk /ak takes the same value as th
classical case. And this is not only at the critical fieldhc
51 but also for all the magnetic fields. However, it shou
be mentioned that for low field,h,hc , EN

(1) does not neces
sarily give the first excited energy level. We should interp
that bk is the correction amplitude for the right-hand side
Eq. ~27! for h,hc .

To summarize, we have given a simple derivation of t
universal amplitude ratio, Eq.~3!. We have shown the rela
tion of Eq. ~6! and its quantum counterpart, Eq.~31!. Al-
though these equations have the same form as the finite
scaling@2,6#, they are exact and valid for an arbitrary tem
perature. One can perform an analytic calculation of e
correction amplitude only at the criticality@11#. Our key re-
lations are Eqs.~16! and ~28!, and we have not used th
condition of the critical point.
3-3
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Izmailain and Hu@11# used a perturbed conformal fiel
theory to understand the correction terms. It is interesting
study directly the amplitude ratio by using the conform
field theory. The present study may give a hint for such
direction.

The finite-size properties depend on the boundary co
tions. Recently, the effect of peculiar boundary conditio
such as the Mo¨bius strip and the Klein bottle, was studied f
the 2D Ising model@24,25#. The effect of boundary condi
tions on the finite-size correction terms is an interesting s
ject to study, which is now in progress.
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In this study, we have started from the expansion of
free energy and the inverse correlation length in odd pow
of 1/N in Eqs. ~1! and ~2!. Away from the critical point,
correction terms in even powers of 1/N may appear. Our
argument is easily extended to such a case, and the m
conclusion remains the same.

We would like to thank N. Sh. Izmailian for informing u
of their results prior to publication, and H. Takano and
Otsuka for valuable discussions. This work was supported
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