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Quite recently, Izmailian and HiPhys. Rev. Lett86, 5160(2001)] studied the finite-size correction terms
for the free energy per spin and the inverse correlation length of the critical two-dimensional Ising model. They
obtained the universal amplitude ratio for the coefficients of two series. In this study we give a simple
derivation of this universal relation; we dmt use an explicit form of series expansion. Moreover, we show
that the Izmailian and Hu's relation is reduced to a simple and exact relation between the free energy and the
correlation length. This equation holds at any temperature and has the same form as the finite-size scaling.
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Universality and scaling are two basic concepts in thefor all of these lattices, that is, the amplitude rabig/a, is
study of phase transitions and critical phenomghad]. The  universal. They also obtained similar expansions for the criti-
critical properties are universal to a large extent dependingal ground state energg®) and the first energy gape(Y)
on a few parameters, such as the space dimensionality andE(?)) of the one-dimensional1D) quantumXY model
the symmetry of the order parameter. Critical exponentswith uniform field[15] at the critical field, and found that the
critical amplitude ratios, and scaling functions are exampleamplitude ratios of two coefficients have the same values as
of universal quantitied3,4]. Finite-size scaling[5,6] has Eq. (3).
been increasingly important, partly due to the progress in the The lowest-order correction ternas andb, are related to
theoretical understanding of finite-size effects, and partly dugéhe central charge and the magnetic scaling field, in the
to the application to the analysis of simulational results. Reconformal field theory by, = cx/6 andb,=2mx, , respec-
cently, more attention has been paid to the universality ofively. The finite-size correction terms of 2D systems have
finite-size scaling functionf7] for both percolation models also received current interest. The finite-size corrections to
[8] and Ising model$9]. In two dimensions the relevance of scaling of correlation lengths and free energies of the critical
the finite-size properties to the conformal field theory is an-2D Ising and three-state Potts models were numerically stud-
other source of intere$t.0]. ied by de QuieroZ16]. The finite-size corrections to the

Quite recently, Izmailian and H[11] studied the finite- energy and specific heat of the critical 2D Ising model were
size correction terms for the free energy per spin and thalso analyzed by Sal@$7]. Moreover, Salas and Sokal stud-
inverse correlation length of critical two-dimension@D)  ied several universal amplitude ratios for the critical 2D Ising
Ising modeld12-14. They obtained the universal amplitude model[18].
ratio for the coefficients of two series. Let us denote the free In this Rapid Communication we will give a simple deri-
energy per spin and the inverse correlation length fowation of the universal amplitude ratio, E¢(B). Instead of
NX o lattice asfy and g,gl, respectively. Then, Izmailian using an explicit form of expansion inN/ which is avail-
and Hu[11] obtained analytic expressions for the finite-sizeable only at the criticality, we show a finite-size-scaling—like

correction coefficients, andb, defined by relation which holds at an arbitrary temperature. The univer-
sal amplitude ratio can be readily derived from this relation.
S Let us start with comparing the free energy per spin and
N(fy—f.)= 2 K , ) the inverse correlation length for sidéand N/2. Assuming
K=1 N2k-1 the expansion, Eq1), we have the expression for the differ-
ence offy andfy,, as
—-1_ - bk “ a
N kzl N2k-1’ @ lez_fN:kz1 N_;k 2%-1}. 4

at the criticality for the squargsg), honeycomb(hc), and  |n a similar way, using Eq(2), we have
plane-triangular(pt) lattices. Heref., denotes the value of

fy asN—. They found that P
Eniz— én :kgl W{Z -1} ®)
b, 2%-1
ay = S2k-1_4 @ From Egs(4) and(5), we get the following statement: If the
relation
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is satisfied, we have the relation of two coefficients, ).  To expresd y,, and &y, we replaceN by N/2 andy, by vy,
If we can show Eq(6) directly, explicit expressions for the in Eqgs.(13) and(14), respectively. Herey, is the value for

coefficientsa, andby are not necessary. Equati® is com-  sizeN/2, and is related to, through the relation
patible to the finite-size scalin@,6] of the singular part of

the free energy foNx o systems,fyo(1/N)éy (N—=); , coslif 2J r
namely, Eq.(6) should hold asymptotically at the critical coshy, =7 ~ Cosyj7 = Ccoshyyr (15
point. In fact, as we show in the following, E¢) holds
exactlyat any temperature for several models that belong tothat is,
the 2D Ising universality class.

First, we deal with the 2D Ising model defined by the Yi=Yor - (16
Hamiltonian

Equation(16) is the basic relation for our argument. Using

relation (16), we have
BH= —J<Z> S'S;,
]

1
fne—In=5{2( Yo+ v+ -+ yon_2)
where the Ising variable; takes*=1, 8=(kgT) ?, and the Nz ZN{ 2070 2Nz

summation is taken over the nearest-neighbor pairs of sites

for NX« lattices. Using a transfer matrix meth¢#l9,20,

we can calculate the free energy per spjp, and the inverse Similarly, we have
correlation Iengthg,gl, through the relations

—(ytyst -+ yan-1} (17)

B B 1
1 Enp— &= E{(72+76+‘"+72N—2_7’o—7’4_"'
fN=§—N InAg, (8
—Yon-a)—(yityst -+ yon_1— Yo~ 72
1 _— .=
gﬁlzz IN(Ag/Ay), (9) Yon-2)}

1
=—{2 4yt )= 4oyt
where Ay and A, are the largest and the second largest ei- 2{ (72+ % van-2) = (71t s

genvalues of the transfer matrix. Here, a geometric fagtor
is 1, 2A/3 and 14/3 for sq, hc, and pt lattices, respectively.

Exact expressions for eigenvaluag and A, are available Comparing Egs(17) and(18), we arrive at the desired rela-

for sq[12,19,2Q, hc[14], and pt[13] lattices. .. tion, Eq. (6). This implies that the ratio for the finite-size
Let us consider the Onsager solution for the sq lattice with.;rection coefficientd, /a, is given by Eq.(3).

periodic boundary conditiorfd2]. The two leading eigenval-  Neyt we consider the Ising model on the hc lattice. The

ues of the transfer matrix are given by two leading eigenvalues of the transfer matrix are given by
[14]

+¥an-1)}- (18)

N—-1
1
Ap=(2 sinhZJ)N’zex;{z > 72r+1), (10) Ni2-1
e AOI(ZSiHhZJ)NEXP( > 72r+1>1 (19
r=0

N-1
1
A,=(2sinh m)“’zexp(z > 'yZ,). (12) N/2—1 Yot T
=0 Ap=(2 sinhZJ)Nexp( 21 Yor + OT> (20)
Here, y, is implicitly given by
In this case,y, is implicitly given by

cosif 2J ra
COSh’yr = m - COSW . (12)

r
coshy, =cosh 2 cosh 2* — sinzﬁ

Then, we get the free energy per spgig, Eqg. (8), and the

. . 1 Tr ) ) o 1/2
inverse correlation lengthy*, Eq.(9), as —cos sink? 2J sint? 2J* —sm2W ,
N—1
1 1 (21)
fn=5IN(2sinh )+ 25 > ¥4, (13
2 2N r=0

where J* is defined by (cosh2-1)(cosh 2*—1)=1. For
N—1 sizeN/2, we replaceN by N/2 andvy, by y, in Egs.(19) and
;0 (Yor s 1— Var)- (14) (20). The relation ofy, , the value for sizeN/2, andy, can

—-1_
n be obtained by using Eq21); we have the same relation as

N| =
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Eq. (16), y, =y, . Starting from Eqs(8) and (9) together  For theN quantum spin systems with the periodic boundary
with Egs.(19) and(20), with some algebra, we get condition, we havg22,23

NE(Fap— ) =C(Ens— x5 1 !
EE\JO):_E 2 Yor+1s (26)
=2(y2tvet -t ¥n-2) r=0
—(y1tyst -+t yn-1) (22 1 Nil
AEN=—73 (y2r— ) 27
Thus, we again obtain relatiof6). In this way, we have NT T e VY Yot

shown that the amplitude rathy, /a, is given by Eq.(3). For )

the pt lattice, we may use the star-triangle transformationvhere we have used the notatigp=A(r #/N). Let us con-

[21] to show Eq.(6) from the result of the hc lattice without Sider the energy for siz and that foN/2 as in the classical

making an explicit calculation. 2D Ising model. For siz&l/2, we replaceN by N/2 andy, by
Some comments should be added here. We have showr in Egs.(26) and(27). Here, y, is again the value foN/2,

the universality of the amplitude ratio, E@), without using  and the relation ofy; and vy, can be obtained by using Eq.

the condition of the criticality. This means that the property(25). As a result, we have the same relation as #&@), that

of this universality holds not only at the critical point but is,

also at any temperature in 2D Ising models. The rhjita, ’

takes the universal value for all the temperatures. However, Yr="Yor- (28)

we should note that the expression for the inverse correlation . ] )

length, Eq.(9), is valid only forT=T,. ForT<T., A,and  hen, we obtain the expression for the difference between

L . 1 . b O

A, are degenerate in the thermodynamic lithito, which ~ Ef andEQ) as

means the existence of the long-range orfk3,20. We 1

should subtract the long-range order contribution from the EOQ) _EO@ = _ 29t oyt ..+

correlation function when considering the correlation length. N2 =N 2 (2072t 7s Yan-2)

We may regard, as the correction amplitude for the right- _

hand side of Eq(9) for T<T,. (it ys+ -+ yan-1)} (29

Izmailian and Hu{11] also studied another model which For the first energy gap, we can also calculate the difference

belongs to the 2D Ising universality class. The 1D quantu”between the values fod andN/2. Using Eq.(28), with some
XY model with uniform field, whose Hamiltonian is given by algebra, we finally have '

N

N
= X X _ y .y 1
T n§=:1 [+ y)ononiat (1=y)onon ] AEle_AENZE{Z(Yz"' Yot Yon-2)

—(y1tyst -ty (B0

From Egs.(29) and (30), we have

z 23
N 23

>
Il

|
N| =
M =

was exactly solved by Katsufad5]. Here,o*, oY ando* are ©)_ =(0)

the Pauli matrices. For9y=<1, there is a critical magnetic —(Enz—EN')=AEnz—AEy, (31
field h,=1, and the phase transition of this model belongs to , ) L

the 2D Ising universality class. Far=1 it is also called the ~Which shows that the amplitude ratio of the fm:g?-sme cor-
1D transverse Ising model. The Hamiltonian of EB3) is  'ection coefficient for the ground state energyE™), ay,

diagonalized by a Jordan-Wigner transformation as and that for the first energy gapE, by, is given by Eq(3).
The amplitude ratidb,/a, takes the same value as the

. 1 classical case. And this is not only at the critical fidig
M Mk 5): (24 =1 put also for all the magnetic fields. However, it should
be mentioned that for low fiely<h,, E{}’ does not neces-
where; , 7, are fermionic creation and annihilation opera- Sarily give the first excited energy level. We should interpret
tors and thatb, is the correction amplitude for the right-hand side of
Eq. (27) for h<h,.
A (k)= /(cosk+h)?+ (ysink)?. (25) To summarize, we have given a simple derivation of the
universal amplitude ratio, Eq3). We have shown the rela-
We should note that the choice lotlepends on the boundary tion of Eq. (6) and its quantum counterpart, Eg1). Al-
condition. The ground state ener§® and the first energy though these equations have the same form as the finite-size
gap AE=EM—E®© of the quantum spin model, respec- scaling[2,6], they are exact and valid for an arbitrary tem-
tively, correspond to the free energy and inverse correlatioperature. One can perform an analytic calculation of each

H= —ZK A(K)

length for the Ising model; that is, correction amplitude only at the criticalifl1]. Our key re-
©) . lations are Eqs(16) and (28), and we have not used the
Nfye—Ey’ and &y <AEy. condition of the critical point.
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Izmailain and Hu[11] used a perturbed conformal field In this study, we have started from the expansion of the
theory to understand the correction terms. It is interesting téree energy and the inverse correlation length in odd powers
study directly the amplitude ratio by using the conformalof 1/N in Egs. (1) and (2). Away from the critical point,

field theory. The present study may give a hint for such gorrection terms in even powers of N/may appear. Our
direction. argument is easily extended to such a case, and the main

The finite-size properties depend on the boundary congiconclusion remains the same.

tions. Recently, the effect of peculiar boundary conditions, we would like to thank N. Sh. Izmailian for informing us
such as the Moius strip and the Klein bottle, was studied for of their results prior to publication, and H. Takano and H.

the 2D Ising mode([24,25. The effect of boundary condi- Otsuka for valuable discussions. This work was supported by
tions on the finite-size correction terms is an interesting suba Grant-in-Aid for Scientific Research from the Ministry of

ject to study, which is now in progress. Education, Science, Sports and Culture, Japan.
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